Principles of Communications ECS 332

Asst. Prof. Dr. Prapun Suksompong
 prapun@siit.tu.ac.th
 4.2 Energy and Power

Office Hours:
BKD, 6th floor of Sirindhralai building
Tuesday $\quad 9: 00-10: 00$
Wednesday 14:20-15:20
Thursday $\quad 9: 00-10: 00$

Inner Product (Cross Correlation)

- Vector

$$
\langle\vec{x}, \vec{y}\rangle=\vec{x} \cdot \vec{y}^{*}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)^{*}=\sum_{k=1}^{n} x_{k} y_{k}^{*}
$$

Complex conjugate

- Waveform:Time-Domain

$$
\langle x, y\rangle=\int_{-\infty}^{\infty} x(t) y^{*}(t) d t
$$

- Waveform: Frequency Domain

$$
\langle X, Y\rangle=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f
$$

these give the
same value
(Parseval's theorem)

Orthogonality

- Two signals are said to be orthogonal if their inner product is zero.
- The symbol \perp is used to denote orthogonality.

$$
\begin{aligned}
& \text { Vector: } \\
& \langle\vec{a}, \vec{b}\rangle=\vec{a} \cdot \vec{b}^{*}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \cdot\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)^{*}=\sum_{k=1}^{n} a_{k} b_{k}^{*}=0 \\
& \text { Time-domain: }
\end{aligned}
$$

$$
\left\langle\langle, b\rangle=\int_{-\infty}^{\infty} a(t) b^{*}(t) d t=0\right.
$$

Example:

Frequency domain:

$$
\langle A, B\rangle=\int_{-\infty}^{\infty} A(f) B^{*}(f) d f=0
$$

Example (Fourier Series):
$\sin \left(2 \pi k_{1} \frac{t}{T}\right)$ and $\cos \left(2 \pi k_{2} \frac{t}{T}\right)$ on $[0, T]$ $e^{j 2 \pi n \frac{t}{T}}$ on $[0, T]$

Important Properties

- Parseval's theorem

$$
\langle x, y\rangle \equiv \int_{-\infty}^{\infty} x(t) y^{*}(t) d t=\int_{-\infty}^{\infty} X(f) Y^{*}(f) d f \equiv\langle X, Y\rangle
$$

It is therefore sufficient to check only on the "convenient" domain.

$$
x(t) \perp y(t) \quad \text { iff } \quad X(f) \perp Y(f) .
$$

- Useful observation: If the non-zero regions of two signals

TDMA \leftarrow - do not overlap in time domain or
FDMA \leftarrow - do not overlap in frequency domain,
 then the two signals are orthogonal (their inner product $=0$).

- However, in general, orthogonal signals may overlap both in time and in frequency domain.

Orthogonality: Example 1

The two waveforms above overlaps both in time domain and in frequency domian.

Orthogonality: Example 2

An example of four "mutually orthogonal" signals.

When $i \neq j$,

$$
\left\langle c_{i}(t), c_{j}(t)\right\rangle=0
$$

